
1
© 2018 Graphine NV

GRANITE
SDK 5.0
T E X T U R E S T R E A M I N G M I D D L E W A R E

+ 3 2 9 2 4 7 0 1 0 5

g r a p h i n e s o f t w a r e . c o m

i n f o @ g r a p h i n e s o f t w a r e . c o m

W
HIT

EPAPER

T R A D E M A R K S

Graphine, the Graphine logo, and Granite SDK are trademarks or registered

trademarks of Graphine NV in Belgium and other countries. Other company

and product names may be trademarks of the respective companies with

which they are associated.

C O P Y R I G H T

© 2018 Graphine NV. All rights reserved

20
18

CONTENTS

Introduction	 4

Streaming	with	Granite	SDK	 5

	 Classic	Texture	Streaming	 6

	 Fine-Grained	Streaming	by	Virtual	Texturing	 6

	 Streaming	from	Tile	Sets	 7

	 Streaming	Procedurally-Generated	Tiles	 8

	 Optimizing	Memory	Consumption	 9

The	Granite	SDK	Library	Overview	 10

	 Runtime	and	Platforms	 10

	 Transcoding	and	Compression	 11

	 Creation	Tools	 12

Integration	and	Workflow	 13

	 Engine	Integration	 13

	 Tools	Pipeline	Integration	 14

	 Tile	Set	Distribution	and	Patching	 17

	 Version	Control	and	Team	Work	Flow	 19

	 Deep	Integration	 20

System	Requirements	and	Overhead	 21

Other	Topics	 22

	 Avoiding	Texture	Popping	 22

	 Instant	Play	and	Optimizing	Loading	Times	 23

	 Optimizing	Tile	Set	Files	by	Tile	Pruning	 23

	 Streaming	Tile	Sets	over	a	Network	and	Visualizing	Tile	Sets	in	WebGL	 24

In	Summary	 24

4
© 2018 Graphine NV

Inroduction

This	document	introduces	you	to	some	of	the	features	and	techniques	of	advanced	texture	streaming	and	
our	product	Granite	SDK,	version	5.	

Granite	SDK	is	a	middleware	solution	that	handles	fine-grained	texture	streaming	for	real-time	3D	software	
applications.	 It	 consists	 of	 both	 production	 and	 runtime	 components.	 The	 runtime	 component	 can	 be	
integrated	into	any	3D	or	game	engine.	While	running	your	application,	it	will	analyze	which	texture	data	is	
visible	to	the	virtual	camera	in	your	scene,	and	continuously	load	the	required	texture	data	asynchronously	
from	disk	into	video	memory.		

With	Granite	SDK,	there’s	no	need	to	load	all	textures	up	front	at	the	start	of	the	application.	All	the	runtime	
subsystems	are	highly	optimized	to	ensure	the	lowest	latency	possible	between	requesting	a	piece	of	texture	
data,	and	the	moment	 it	becomes	available	 in	video	memory	 for	 rendering.	 It	doesn’t	matter	how	many	
textures	you	have	in	your	scene,	or	how	high	the	resolutions	of	those	textures	are,	Granite	SDK	will	elegantly	
handle	all	your	content	at	90	frames	per	second	easily.	

The	Granite	runtime	runs	on	millions	of	devices	worldwide	on	multiple	platforms.	 Its	production	pipeline	
is	industry	proven	by	some	of	the	leading	game	production	studios	such	as	Wargaming,	Sumo	Digital,	and	
Funcom.	Granite	 SDK	 is	developed	by	a	dedicated	 team,	 is	 available	with	premium	support,	 and	 custom	
features	can	be	added	on	request.	

The	following	benefits	are	provided	by	Granite	SDK:	

•	 Use	4K	or	8K	textures	in	all	your	materials
•	 Support	4K	rendering
•	 Lower	your	texture	memory	requirement	
•	 Decouple	memory	usage	from	the	assets	and	their	resolution	in	your	scene
•	 Reduce	startup	loading	times	to	seconds
•	 Free	artists	from	technical	constrains
•	 Get	fine-grained	control	over	the	runtime	resources
•	 Have	textures	of	up	to	256.000	by	256.000	pixels	in	size
•	 Have	single	hero	assets	beyond	16K	by	16K	or	hundreds	of	UDIM	patches
•	 Have	dynamic	and	user	authored	environments	combined	with	thousands	of	unique	assets	
•	 Optimize	memory	for	ultra-high	resolution	procedural	textures	(2D	textures	and	cubemaps)
•	 Automatically	get	the	optimal	texture	quality	for	a	fixed	amount	of	memory	that	you	define
•	 Select	the	optimal	performance	versus	memory	trade-off	for	each	texture
•	 Enable	ultra-high	texture	quality	on	medium	to	low	spec	devices
•	 Increase	artist	iteration	time	with	our	fast	texture	encoder
•	 Support	every	texture	format	and	compression	in	your	engine	
•	 Minimizing	texture	state	changes	in	your	renderer	to	improve	performance
•	 Compress	your	textures	by	60%	and	more

5
© 2018 Graphine NV

•	 Optimize	and	finely	tune	disk	IO
•	 Support	ultra-dense,	compact	scenes	and	large	open	worlds	with	one	system

The	 remainder	 of	 this	 document	first	 discusses	 some	of	 the	 key	 abilities	 of	 the	Granite	 SDK,	 next,	what	
comes	in	the	box,	and	finally,	has	some	words	on	integrating	Granite	SDK	into	your	own	application	and	extra	
features.

Streaming with Granite SDK

Texture	 streaming	 is	 the	 process	 of	 progressively	 loading	 a	 texture	 to	memory.	 By	 progressively	 loading	
textures,	loading	times	can	be	shortened	(as	not	all	textures	have	to	be	loaded	up	front)	and	memory	usage	
can	be	reduced	(as	not	all	texture	data	needs	to	be	present	in	memory	at	once).	In	turn,	memory	reduction	
allows	the	application	to	use	and	display	more	textures,	increasing	the	visual	quality.	The	biggest	advantage	
is	that	the	total	GPU	memory	can	be	used	a	lot	more	efficiently	than	with	traditional	textures.

For	example,	a	streaming	system	would	allow	you	to	render	multiple	characters	on	screen	each	using	its	own	
unique	8192x8192	texture.	Characters	in	the	virtual	distance	would	not	have	their	full	texture	loaded	into	
memory,	maybe	only	the	top	mips.	Once	the	virtual	camera	moves	closer,	the	full	resolution	textures	would	
be	loaded	and	displayed	on	the	fly.	A	more	advanced	streaming	system	would	even	differentiate	between	
the	orientations	of	the	virtual	camera.	If	the	backside	of	a	character	is	not	visible,	its	textures	would	not	be	
loaded	until	the	camera	moves	around	the	character.	

Granite	 SDK	 is	 an	 advanced	 streaming	middleware	 library.	 It	 allows	 you	 to	 load	 textures	 asynchronously	
during	the	course	of	the	application	without	needing	to	load	all	the	textures	up	front.		To	accomplish	this,	
the	Granite	SDK	streaming	system	manages	texture	data	in	small	tiles	(typically	128x128	texels).		Tiles	are	the	
basic	units	of	streaming	in	the	Granite	SDK,	each	tile	can	be	requested	and	loaded	separately	by	our	library,	
resulting	in	a	texture	that	is	sparsely	loaded.	Multiple	resolution	levels	(mip	maps)	of	your	textures	are	tiled	
as	well,	so	for	example,	one	tile	can	hold	detailed	pixels	from	a	mountain	top,	and	another	tile	can	hold	a	
low-detailed	version	of	the	entire	landscape.	Figure	1	shows	this.

 Figure 1:	Textures	are	mip	mapped	and	split	into	tiles,	the	basic	units	for	streaming.

6
© 2018 Graphine NV

Classic Texture Streaming

Granite	supports	two	types	of	streaming	modes.	First,	Granite	SDK	allows	for	classic	mip	map	streaming:	
memory	for	a	texture’s	mip	map	pyramid	is	fully	allocated	on	the	GPU,	but	individual	mips	are	progressively	
streamed	as	 they	are	used.	Figure	2	shows	this.	Textures	reside	on	the	hard	disk,	and	are	split	 into	tiles.	
Texture	mips	are	streamed	by	loading	tiles	from	the	disk	and	uploading	them	to	the	GPU.	While	this	approach	
doesn't	save	much	GPU	memory	in	itself,	the	cost	of	loading	textures	is	significantly	reduced,	allowing	you	to	
swap	textures	in	and	out	more	easily.	This	approach	is	ideal	if	you	simply	want	to	reduce	loading	times	and	
bandwidth	use	for	your	textures.

Figure 2:	Using	the	Granite	SDK	run-time	for	classic	texture	streaming.

Fine-Grained Streaming by Virtual Texturing

Granite	SDK’s	second	streaming	mode	gives	you	more	fine-grained	control	over	what	texture	data	is	resident	
in	video	memory	by	managing	 individual	 small	tiles	of	 texture	data.	This	allows	you	 to	use	an	extremely	
high	amount	of	texture	data	(each	texture	atlas	can	be	up	to	256K	by	256K)	that	are	orders	of	magnitude	
larger	than	what	can	be	stored	in	(video)	memory.	This	approach	is	not	only	ideal	for	large	landscapes,	every	
scenario	with	high-quality	textured	meshes	benefits	from	this	approach.

The	core	of	this	system	replaces	the	traditional	fully	allocated	GPU	texture	(see	the	previous	Section	'Classic	
Texture	Streaming’	or	more	info	on	our		website)	with	a	cache	texture	that	holds	tiles	(see	Figure	3).	Reading	
from	such	a	partially	resident	texture	is	performed	by	a	shader	that	translates	your	input	texture	coordinates	
into	 texture	 lookups	 in	 the	 cache	 texture.	 Even	 when	 using	moderately-sized	 textures,	 the	 fine-grained	
control	provided	by	the	Granite	SDK	results	in	less	video	memory	required	for	your	texture	data	compared	to	
a	typical	mip	map	based	texture	streaming	solution.	This	approach	is	typically	called	Virtual	Texturing,	it	can	
be	seen	as	a	successor	to	the	MegaTexture	technology	of	id	Software.	More	information	on	Virtual	Texturing	
can	be	found	on	our	website.

7
© 2018 Graphine NV

To	determine	what	tiles	to	load	into	the	cache	texture,	the	system	first	determines	what	tiles	are	visible	on	
the	screen	and	at	what	mip	map	resolution	they	should	be	loaded.	This	works	fully	automatically	and	does	
not	require	manual	tweaking	or	tagging	of	objects.	Any	tiles	not	present	in	the	cache	are	then	streamed	from	
the	storage	device,	transcoded,	and	uploaded	to	the	GPU	cache	texture.

A	big	 advantage	of	 this	 approach	 is	 that	 it	 is	 inherently	 scalable,	 as	 texture	tiles	 are	only	 loaded	 if	 their	
content	is	visible	on	the	screen	and	are	loaded	at	the	required	mip	map	resolution.	It	automatically	loads	less	
data	on	smaller	screen	resolutions	requiring	less	manual	tweaking	or	user	configuration.	Basically,	it	imposes	
no	 limits	on	the	texture	resolution	anymore,	your	application	can	have	as	many	textures	as	necessary	to	
reach	your	quality	goals.

Streaming from Tile Sets

Granite	SDK	streams	any	texture	type,	whether	it	consists	of	typical	PBR-style	materials,	photogrammetry-
generated	textures,	UDIM	textures,	cube	maps,	environment	maps,	displacement	maps,	and	many	more.	
Granite	SDK	 typically	 streams	 textures	 from	one	or	more	Tile	Sets.	A	Tile	Set	bundles	 several	 textures	 in	
a	big	atlas	 that	 can	 contain	many,	possibly	 thousands	of	 textures.	 Figure	4	 illustrates	 this.	A	Tile	 Set	 can	
have	multiple	layers.	Layers	allow	bundling	together	different	textures	belonging	to	the	same	mesh	texture	
coordinates	 in	a	single	 logical	unit.	For	example,	assume	you	have	a	character	with	three	painted	texture	
layers:	diffuse,	normal,	 roughness.	Then	Granite	allows	you	 to	bundle	 these	 three	 textures	 together	 in	a	
single,	what	we	call,	Stacked	Texture	with	three	layers.	Stacking	textures	this	way	offers	significant	benefits	
in	 streaming	performance	 since	Granite	 knows	how	 the	 three	 source	 textures	 are	 related	 to	 each	other	
(they	share	texture	coordinates).	Granite	then	ensures	that	the	data	of	those	three	layers	can	be	efficiently	
accessed	as	a	single	unit.

All	textures	in	the	Tile	Set	are	split	into	tiles	which	are	served	to	the	streaming	system.	A	Tile	Set	can	be	stored	
on	disk	or	can	be	procedurally	generated	in	memory	on-the-fly.	Both	Tile	Set	files	and	procedural	Tile	Sets	
feed	tiles	to	the	Granite	Streaming	Runtime.	The	Granite	Runtime	in	turn	uploads	these	tiles	to	the	VRAM,	
and	 the	same	Runtime	does	 this	 for	both	 the	classical	mip	map	streaming	and	Virtual	Texture	streaming	
scenarios.	Figure	5	shows	this.

If	a	Tile	Set	is	stored	on	disk,	it	consists	of	multiple	files	(GTS	header	and	GTP	page	file(s),	more	on	this	later	
in	this	text).	The	lay-out	of	each	of	the	Tile	Set’s	files	 is	carefully	designed	for	high	data	throughput	from	
disk	 into	memory.	Tile	Set	files	can	be	optimized	for	different	storage	devices	taking	the	device's	specific	
characteristics	(e.g.	cluster	size)	into	account.	

8
© 2018 Graphine NV

Figure 3:	Using	the	Granite	SDK	run-time	for	fine-grained	streaming	(a.k.a.	Virtual	Texturing).

During	streaming,	tiles	travel	through	multiple	 levels	of	tile	caches,	 from	hard	disk	to	system	memory,	to	
video	memory.	Each	cache	can	be	 individually	 configured	 in	 size.	 Such	a	 system	ensures	 the	 low	 latency	
access	to	the	texture	data	while	giving	complete	control	on	the	amount	of	resources	used	at	runtime.

Figure 4:	Tile	Set	file	combines	many	textures	in	many	layers.

Streaming Procedurally-Generated Tiles

Granite	SDK	supports	procedural	generation	of	tiles,	sometimes	called	Procedural	Virtual	Texturing.	Instead	
of	loading	a	tile	from	a	Tile	Set	file	on	hard	disk,	the	tile	is	created	on-the-fly	and	supplied	of	its	pixel	data	
by	a	user-implemented	call	back.	This	generation	of	pixel	data	is	done	at	runtime,	on	the	end	user’s	system,	
pixels	are	never	stored	on	disk.	

9
© 2018 Graphine NV

The	application	provides	either	 raw	data	 (e.g.,	RGBA)	or	 compressed	data	 (e.g.,	BC7).	A	generated	tile	 is	
placed	in	the	caches	just	as	offline-generated	file-loaded	tiles	are.	Because	of	the	typical	coherency	between	
rendered	frames,	procedurally-generated	tiles	most	often	stay	 in	the	cache	for	quite	a	while.	 It	 isn’t	until	
they	get	evicted	and	later	requested	again,	that	they	get	asked	to	be	regenerated	by	the	procedural	system.	
Procedural	VT	can	be	used	for	custom	terrain	splatting,	dynamic	tessellation	or	height	maps,	decals,	procedural	
level	generation,	and	many	more	scenarios.

Optimizing Memory Consumption

Streaming	textures	instead	of	loading	them	in	advance	reduces	memory	consumption	and	makes	memory	
consumption	more	predictable,	even	when	working	with	very	large	textures	and	large	amounts	of	textures.	
A	 streaming	 system	 loads	only	 those	 textures	 that	are	necessary,	 so	 your	 texture	memory	budget	 is	not	
determined	anymore	by	the	sum	of	all	texture	sizes,	but	by	the	amount	of	textures	visible	on	screen.	In	other	
words,	you	can	use	more	textures	than	your	physical	memory	would	allow.	Granite’s	Virtual	Texturing	mode	
goes	one	step	further	and	loads	only	those	texture	tiles	that	are	visible	on	screen.	This	means	Granite	loads	
textures	into	memory	in	a	much	more	precise	and	fine-grained	fashion,	so	less	memory	is	wasted.

Granite	SDK	gives	you	control	over	the	memory	consumption	by	allowing	you	to	control	two	caches,	a	CPU	
and	a	GPU	cache.	The	CPU	cache	sits	between	the	Tile	Set	file	on	the	hard	disk	and	the	GPU:	tiles	are	read	
from	disk	and	put	in	this	cache	before	they	are	uploaded.	The	GPU	cache	sits	in	the	GPU	VRAM	and	consists	
of	GPU	textures	where	tiles	are	uploaded	to.	You	decide	how	many	caches	are	set	up	for	each	datatype	for	a	
Tile	Set	and	provide	a	texture	budget	in	number	of	megabytes.

Teams	typically	set	up	the	cache	sizes	to	correspond	with	their	graphics	quality	preset	of	their	application.	
Low	end	systems	run	with	a	small	cache,	high-end	systems	with	a	large.	Performance	scales	with	the	cache	
sizes,	but	even	low	cache	settings	can	give	great	quality	for	some	applications.	Some	teams,	for	example,		
Funcom	with	their	game	Conan	Exiles	,	even	set	their	caches	as	low	as	128MB	for	CPU	and	128MB	for	GPU.	
This	way,	they	can	still	render	high	resolution	textures	on	low-end	systems	without	any	visual	artefacts.	For	
high-end	systems,	Funcom	for	this	game	set	their	caches	to	512MB	CPU	and	512MB	GPU.

In	case	the	cache	is	set	too	small,	cache	thrashing	can	occur.	Tiles	keep	getting	loaded	into	the	cache,	evoked,	
only	 to	 be	 reloaded	 again	 afterwards.	 Granite	 SDK	 supports	 a	 mechanism	 to	 prevent	 cache	 thrashing.	
Automatic	LOD	biasing	lowers	the	load	on	the	streaming	system	by	suspending	requests	for	higher	resolution	
textures	as	 long	as	cache	 thrashing	occurs.	 It	allows	 the	system	to	 recover	by	gradually	 requesting	more	
detailed	textures	over	time.	Such	a	system,	for	example,	can	adjust	to	a	sudden	spike	in	hard	disk	activity	and	
allow	the	hard	disk	to	recover.

10
© 2018 Graphine NV

Figure 5:	Tiles	are	loaded	from	disk	or	procedurally	generated	and	streamed	to	
	 	 	 			VRAM	for	both	mip	map	streaming	and	Virtual	Texturing.

The Granite SDK Library Overview

Out	of	the	box,	Granite	SDK	comes	with	a	streaming	runtime	library,	tile	creation	and	management	tools,	and	
extensive	online	documentation	and	samples.

Runtime and Platforms

The	 runtime	 library	 exposes	 a	 cross-platform	C++	API.	 It	 runs	 highly-optimized,	multi-threaded	 SSE	 code	
to	ensure	the	fastest	 low-latency	access	to	tiles	possible.	 It	 is	available	as	both	32-bit	and	64-bit	 libraries	
and	comes	with	a	number	of	so	called	tiling	back	ends,	platform-specific	sub	libraries	targeting	the	various	
available	3D	graphics	APIs.	Granite	SDK	includes	tiling	back	ends	for	Direct3D11,	Direct3D12,	PS4,	OpenGL,	
and	OpenGL	ES	 (Direct3D9	only	 upon	 request).	 These	back	 ends	 are	highly	 optimized	 to	 ensure	optimal	
GPU	performance.	Each	back	end	is	customized	to	take	advantage	of	the	available	features	a	specific	3D	API	
exposes.	For	example,	some	run	compute	shaders,	others	run	pixel	shaders	or	fall	back	to	run	on	the	CPU.

Figure 6:	Overview	of	the	Granite	SDK	Runtime

11
© 2018 Graphine NV

Granite	SDK	runtime	supports	many	platforms:	Windows	(x86,	x64),	MacOS,	Linux,	PS4,	PS4	Pro,	XBOX	One,	
XBOX	One	X,	and	Android.	Each	platform-specific	runtime	is	customized	to	take	advantage	of	platform-specific	
features	including	threading	and	IO	APIs,	custom	texture	format	upload	routines,	and	platform-specific	GPU	
APIs.	Note	that	Granite	SDK	does	not	support	Partially	Resident	(PRT)	hardware	textures	or	Tiled	Resources	
(TR)	anymore.	Support1	for	PRT	and	TR	was	ceased	as	later	versions	of	Granite’s	software	VT	system	surpassed	
all	benefits	of	PRT	or	TR.	Also	note	that	the	Granite	SDK	Tile	Set	building	tools	run	on	Windows	x64	only.
The	newest	VR	and	AR	platforms	are	also	supported	by	the	runtime.	As	many	of	the	teams	using	Granite	
have	proven,	Granite	SDK	has	no	issues	with	driving	texture	streaming	for	virtual	reality	use	cases	and	is	fully	
compatible	with	VR	SDKs	such	as	Oculus	SDK	and	SteamVR	SDK.	Clients	using	Granite	for	VR	include		Survios,	
Sólfar,		Nurulize,	and		Realities	IO.

Transcoding and Compression

Granite	SDK	comes	with	a	built-in	transcoder:	a	coding	unit	that	decompresses	tiles	from	our	highly	compressed	
proprietary	disk	format	straight	to	a	compressed	GPU	texture.	Modern	graphics	hardware	typically	stores	
textures	compressed	in	video	memory	to	save	bandwidth	and	maximize	the	amount	of	texture	data	that	can	
be	used.	Streaming	benefits	from	these	formats	as	well,	they	save	bandwidth	when	copying	textures	from	
system	to	GPU	memory.	The	transcoder	is	highly	optimized	for	a	low	CPU	impact	and	uses	SIMD	optimized	
code.	Granite	SDK	supports	almost	all	frequently	used	compressed	texture	formats:	BC1,	BC3,	BC4,	BC5,	BC6,	
BC7,	and	ASTC.

Although	GPU	compression	formats	are	perfect	for	GPU	sampling,	they	are	not	optimal	with	respect	to	the	
size	of	 textures	on	disk.	Granite	SDK	additionally	 compresses	Tile	Sets	on	disk	with	a	proprietary	 texture	
codec	specifically	designed	for	common	texture	content	used	in	(real-time)	rendering	engines,	including	but	
not	limited	to	color	data,	alpha	channels	and	normal	vectors.	

These	codecs	achieve	a	much	higher	compression	ratio	(at	comparable	texture	quality)	than	commonly	used	
fixed-rate	compression	techniques	(e.g.	DXT1,	DXT5	...).	At	runtime,	tiles	compressed	with	these	codecs	get	
transcoded	on-the-fly	to	a	GPU-friendly	fixed-rate	 format.	Additionally,	 the	Graphine	codecs	allow	you	to	
adjust	 a	 quality	 setting	 so	 that	 you	 can	 control	 the	 storage	 size	 and	 quality	 for	 a	 specific	 texture.	 Some	
scenarios	show	a	reduction	of	disk	space	used	by	textures	by	up	to	86%	compared	to	DXT5.	You	can	also	opt	
for	a	high	quality	scheme	that	codes	textures	directly	to	specific	BC	format	on	disk	(e.g.,	BC5	on	disk).	This	
does	not	require	transcoding	of	the	texture	to	a	GPU	format,	which	saves	processing	time	and	allows	for	the	
best	offline	BC	compression	quality.	Finally,	 for	those	scenarios	requiring	the	highest	quality,	Granite	also	
supports	lossless	coding.

1	For	more	information	on	PRT	and	TR,	see	Graphine’s	presentation	together	with	Microsoft	at	Build	2013	
on	Tiled	Resources	here:		https://www.youtube.com/watch?v=QB0VKmk5bmI	.	Additional	information	can
	be	found	on	our	website		http://graphinesoftware.com/our-technology/virtual-texturing.

12
© 2018 Graphine NV

Figure 7:	Screenshots	of	the	Granite	SDK	tools:	upper	row,	GrBuild	CLI	and	Tile	Set	Studio	GUI	build	tools,	
respectively,	lower	row,	Tile	Set	Viewer	and	PerformanceAnalyzer	inspection	tools.

Creation Tools

Granite	 SDK	 comes	 with	 tools	 to	 create,	 manage,	 and	 inspect	 Tile	 Sets,	 as	 well	 as	 to	 profile	 streaming	
performance	(see	Figure	7).	Creating	and	managing	is	performed	by	a	command-line	interface	tool,	GrBuild,	
or	a	GUI-capable	tool	called	Tile	Set	Studio.	Both	tools	offer	the	same	functionality:	they	create	a	Tile	Set	by	
importing	texture	data,	splitting	them	into	tiles,	coding	the	pixel	data,	and	writing	the	streamable	Tile	Set	file	
to	disk.

All	common	image	file	formats	are	supported	(e.g.,	.bmp,	.jpg,	.jpeg,	.gif,	.pcx,	.png,	.tga,	.psd,	.tif,	.tiff,	.hdr,	
.dds,	.exr),	and	during	import,	the	tools	can	perform	basic	image	operations	such	as	resizing	and	mirroring.	
Individual	 channels	 of	 images	 can	 be	 inverted,	 swizzled,	 and	 mixed	 and	 matched	 from	 different	 input	
textures,	e.g.,	filling	a	X8Y8	layer	with	two	individual	grayscale	images.	Importing	tiled	images	is	supported	
(e.g.,	multiple	images	describing	columns	and	rows	of	a	large	image)	including	the	well-known	UDIM	texture	
format	which	the	streaming	runtime	natively	supports.	Linear	and	SRGB	pixel	data	are	supported,	as	well	as	
HDR,	and,	if	preferred,	the	tools	can	perform	bit	depth	conversion	from	HDR	to	LDR	and	vice	versa.	Cube	
maps	can	also	be	imported	and	are	supported	by	the	run	time.	After	importing,	textures	are	coded,	at	which	
stage,	if	preferred,	each	texture	can	have	its	compression	settings	individually	set.

13
© 2018 Graphine NV

After	coding,	the	tools	atlas	each	individual	texture	in	a	large	texture	atlas.	Neither	the	tools	nor	the	Granite	
SDK	Runtime	impose	a	real	limit	on	the	atlas	resolution.	The	Tile	Set’s	texture	atlas	can	grow	without	issues	
to	256K	x	256K	texels.

The	Granite	SDK	also	comes	with	a	viewer	tool	for	Tile	Sets,	Tile	Set	Viewer,	which	is	typically	used	as	an	
inspection	tool	at	production	time	for	GTS	files.	Finally,	Granite	SDK	comes	with	a	performance	analyzer	tool	
that	allow	inspection	of	key	streaming	performance	metrics	of	the	streaming	application.

Integration and Workflow

Engine Integration

The	Granite	SDK	is	designed	from	the	ground	up	to	be	easy	to	integrate	into	existing	engines	and	pipelines.	
It	supports	common	practices	such	as	easy	to	overload	memory	allocations	and	error	reporting.	Besides	this,	
it	also	allows	fully	customizing	its	use	of	threads	by	integrating	with	your	existing	job	system.	Granite	has	a	
standard	multithreading	implementation	if	you	don't	have	a	job	system	in	your	engine.	Besides	threading,	
(asynchronous)	disk-IO	can	also	easily	be	customized,	allowing	the	Granite	SDK	to	be	used	alongside	your	
in-house	streaming	system.

When	integrating	Granite	SDK	in	your	engine	we	understand	that	you	want	maximal	control	about	Granite's	
communication	with	the	graphics	API	with	a	minimal	amount	of	integration	effort.	Therefore,	Granite	SDK	
offers	three	levels	of	integration	between	Granite	and	the	Graphics	API	that	vary	in	their	degree	of	abstraction	
and	code	that	needs	to	be	written	by	the	user:

•	 Fully	automatic:	You	provide	Granite	SDK	with	a	pointer	or	handle	to	your	graphics	device	context	
and	 let	 the	 library	handle	everything	 for	you.	Granite	SDK	will	provide	you	with	standard	graphics	
API	texture	objects	which	can	be	used	in	your	shader	the	same	way	as	any	other	graphics	API	texture	
object.

•	 Engine	managed	resources:	Granite	will	call	back	to	the	engine	to	create/destroy	resources	but	will	
itself	ensure	that	the	resource	contents	are	correctly	updated	and	maintained.

•	 Engine	API:	The	game	engine	provides	an	implementation	of	all	the	graphics	API	callbacks	used	by	
Granite.	This	provides	maximal	flexibility	on	how	the	Graphics	API	is	accessed	at	the	expense	of	more	
integration	work.

Fetching	texels	from	Granite’s	Stacked	Textures	is	done	in	your	shaders	through	specialized	Granite	shader	
instructions.	These	are	available	for	HLSL	(old	and	new	syntax)	and	GLSL,	and	for	shader	models	SM3,	SM4,	
and	 SM5.	All	 type	of	 shaders	 are	 supported:	 pixel,	 vertex,	 geometry,	 compute,	 and	 tessellation	 shaders.	
Integrating	into	your	custom	shader	involves	replacing	the	typical	tex2D	with	a	line	like	this:

14
© 2018 Graphine NV

The	Granite	shader	instructions	are	provided	through	Granite	headers	which	you	can	include	in	your	shaders.

In	a	Virtual	Texture	streaming	scenario,	Granite	SDK	must	determine	what	tiles	to	load	into	the	cache	texture	
by	looking	at	what	tiles	are	visible	on	the	screen	and	at	what	mipmap	resolution	they	are	needed.	Granite	
SDK	exposes	multiple	methods	to	accomplish	this,	all	working	fully	automatically,	not	requiring	any	manual	
tweaking	or	tagging	of	objects.	The	recommended	method	binds	an	extra	MRT	render	target	during	regular	
rendering	which	 the	Granite	SDK	shader	code	fills.	Another	method	binds	a	Read/Write	 texture	 that	 is	a	
fraction	of	the	screen	size.	The	texture	is	again	written	during	regular	rendering	by	Granite	SDK	shader	code.	
The	final	method,	the	simplest	and	most	portable	option,	re-renders	a	scene	at	a	lower	resolution	using	a	
special	Granite	resolve	shader.

Configuring for optimal performance and memory consumption

Granite	exposes	a	 lot	of	options	that	allow	you	to	tweak	Granite	for	different	target	hardware	and	usage	
scenarios.	For	example,	Granite	gives	full	control	over	its	caches.	You	can	assign	caches	to	Tile	Sets,	share	
caches	between	Tile	Sets	and	data	types	(e.g.,	one	BC7	cache).	You	set	the	texture	budget	by	providing	its	size	
in	number	of	megabytes.	This	way,	we	see	teams	setting	up	a	cache	strategy	per	user-configurable	graphics	
quality	level	they	offer	in	their	game,	for	example,	Funcom	as	we	previously	mentioned.	We	also	see	teams	
sometimes	set	up	a	dedicated	cache	for	their	Hero	asset.

You	can	set	the	maximum	amount	of	tiles	that	can	be	uploaded	each	frame,	pin	down	certain	tiles	in	the	
cache,	and	determine	what	happens	when	the	cache	starts	thrashing.	You	can	configure	which	part	of	the	
cache	is	reserved	for	previously	seen	and	newly	seen	textures.	For	example,	a	very	 linear	game	can	have	
a	caching	strategy	that	very	quickly	evoke	previously-seen	unused	tiles.	You	can	also	set	a	MIP	bias,	a	bias	
that	automatically	lowers	quality	in	the	scene	when	the	quality	is	not	needed	(e.g.,	fast	moving	camera	with	
motion	blur)	or	the	streaming	engine	starts	lagging	behind.	Once	it	recuperates,	the	bias	gets	lowered	and	
the	quality	gradually	starts	to	increase.	Finally,	you	can	control	the	level	of	anisotropic	filtering	and	enable/
disable	trilinear	filtering.

Tools Pipeline Integration

The	Granite	SDK	tools	are	designed	to	be	easily	integrated	into	your	existing	production	pipeline.	The	tools	
can	be	integrated	in	such	a	way	that	they	have	no	impact	on	the	artist	integration	time	in	your	engine.	In	fact,	
by	using	our	proprietary	compression	format	instead	of	BC/DXT,	assets	can	even	be	encoded	and	presented	
faster	in	the	engine.

Granite	SDK	comes	with	two	tools	for	creating	and	managing	Tile	Sets:	a	command-line	interface	(CLI)	and	
a	GUI-capable	 tool.	The	CLI	 tool,	GrBuild,	can	be	easily	steered	 from	existing	tool	pipelines	 through	shell	
scripts.	A	typical	run	of	the	CLI	tool	starts	with	importing	existing	texture	images	and	combining	them	into	
Stacked	Textures	(a	group	of	textures	stacked	together	belonging	to	the	same	mesh	texture	coordinates	in	a	
single	logical	unit).	Figure	8	shows	the	entire	build	pipeline.

15
© 2018 Graphine NV

Figure 8:	Import	pipeline:	from	individual	images	to	Stacked	Textures,	GTex	files,	and	atlased	Tile	Set	files.

Figure 9:	Example	of	XML	import	script.

One	of	the	basic	operating	mechanisms	to	manage	Tile	Sets	are	import	scripts.	These	XML	scripts	describe	
the	Stacked	Textures	in	the	Tile	Set,	how	they	need	to	be	imported,	coded,	and	build.	Figure	9	shows	this.	The	
XML	describes	a	path	to	the	textures,	and	any	basic	image	operations	such	as	resizing,	channel	inversion	that	
the	tool	supports.	The	import	script	also	sets	the	compression	format,	ranging	from	our	high-compression	
proprietary	coding	format	to	GPU-compatible	formats	on	disk	(e.g.,	BC5	on	disk).	An	import	script	is	typically	
used	for	the	CLI	interface,	evidently,	the	GUI	does	not	require	these	scripts	but	instead	allows	the	user	to	
import	using	Graphical	User	Elements.

The	 import	pipeline	 is	flexible.	Some	users	and	teams	set	up	an	 import	script	 for	each	 individual	stacked	
texture.	Others	set	up	a	single	import	script	that	explicitly	enumerates	all	their	stacked	textures.	Yet	another	
option	is	to	let	our	CLI	tool	scan	a	directory	for	textures	and	set	up	stacked	textures	automatically	according	
to	an	import	template.

16
© 2018 Graphine NV

Next	in	the	pipeline,	a	Stacked	Texture	is	coded	to	a	GTex	file,	a	Granite	Texture	(see	again	Figure	8).	This	
file	contains	all	tiles	for	the	entire	Stacked	Texture,	including	its	mips,	in	a	coded	format.	Conceptually,	it	is	
comparable	to	a	DDS	texture	of	your	original	source	texture.	The	Granite	runtime	can	stream	from	these	
GTex	files,	but	only	during	development.	GTex	files	are	built	once	and	shared	during	production.	Hence,	they	
are	optimized	to	a	lesser	extent	for	streaming	and	more	for	portability	and	sharing	during	production.	For	
best	streaming	results,	an	optimized	Tile	Set	file	needs	to	be	generated	based	on	these	GTex	files.	This	 is	
conceptually	comparable	with	packing	DDS	files	(the	GTex’s)	into	a	large	container	format	like	a	multi-file	zip	
(the	Tile	Set	files).

Figure 10:	Example	of	a	GTS	accompanied	by	GTP	files.

Figure 11:	GTS	files	accompanied	by	GTex	(production)	or	GTP	(distribution)	files.

When	generated,	a	Tile	Set	consists	of	a	GTS	Header	file	and	accompanying	GTP	Page	files.	Figure	10	illustrates	
this.	As	the	name	suggests,	the	GTS	header	file	does	not	contain	any	tiles,	instead,	the	accompanying	GTP	
page	 files	 do.	 These	 page	 files	 are	 built	 to	 achieve	 optimal	 streaming	 performance.	 They	 cluster	 tiles	 in	
pages,	a	block	of	data	aligned	for	optimal	IO	reading	requests,	typically	sized	to	1MB.	These	pages	are	then	
reorganized	 in	 special	access	pattern	order,	and	have	any	duplicate	data	 removed.	GTP	page	files	can	be	
optimized	per	platform,	although	we	see	many	users	and	teams	share	their	Tile	Set	files	across	platforms,	
some	even	across	PC	and	mobile	platforms.

17
© 2018 Graphine NV

Figure 12: Tile	Set	Studio,	a	GUI	application	for	easily	creating	and	managing	Tile	Sets.

During	production,	you	can	choose	to	stream	from	GTex	files	or	from	GTP	Page	files.	Because	GTex	files	lack	
the	aforementioned	optimizations,	they	take	less	time	to	generate	than	GTP	page	files,	and	they	are	more	self-
contained	to	be	easily	sharable	in	teams.	GTP	page	files	on	the	other	hand	take	longer	to	generate	because	
they	are	optimal	towards	streaming	for	a	specific	platform.	Figure	11	illustrates	the	files	for	streaming	during	
production	(left)	and	distribution	(right).

Finally,	 the	GUI	tool,	Tile	Set	Studio,	has	the	same	functionality	as	the	CLI	 tool	but	with	a	Graphical	User	
Interface,	see	Figure	12.	We	typically	see	users	and	teams	of	large	productions	use	the	GUI	tool	to	set	up	the	
initial	CLI	import	scripts	and	to	familiarize	themselves	with	the	capabilities	of	the	tools.

Tile Set Distribution and Patching

When	building	a	Tile	Set,	the	Granite	tools	produce	a	number	of	different	files:	a	GTex	file	for	each	individual	
Stacked	Texture,	and	one	GTS	header	file	accompanied	by	multiple	GTP	page	files,	holding	all	your	Stacked	
Textures.	As	mentioned	before,	GTex	files	are	intermediary	files	that	are	shared	and	streamed	from	during	
production.	The	GTS	header	and	its	GTP	page	files	on	the	other	hand	are	the	files	that	get	shipped	with	the	
final	build	of	the	application.	They	are	built	for	optimal	streaming	for	the	final	build,	on	one	or	more	target	
platforms.	Copy	the	GTS	and	GTP	files	to	your	application’s	content	folder,	point	the	Granite	SDK	to	the	GTS	
header	file,	and	Granite	can	start	streaming.

18
© 2018 Graphine NV

`

Figure 13:	Examples	of	two	GTP	paging	schemes	and	the	files	generated	by.	
Note	the	Streaming	from	GTex	scheme	available	during	production.

A	Tile	Set	typically	consists	of	multiple	GTP	page	files.	One	of	the	reasons	for	this	is	it	to	make	distribution	
and	any	future	content	patching	easier.	Instead	of	distributing	one	very	large	file	(e.g.,	2GB),	you	distribute	
a	number	of	smaller	files	(e.g.,	20	files	of	100MB).	Any	changes	made	to	the	Tile	Set	in	a	later	patch,	makes	
more	granular	and	therefore	more	manageable	changes	to	the	GTP	files.	For	example,	instead	of	building	and	
redistributing	a	2GB	changed	file,	you	now	build	and	redistribute	only	one	out	of	twenty	100MB	files.

You	 can	 choose	 different	 GTP	 packing	 strategies	 according	 to	 your	 needs.	 The	Granite	 SDK	 is	 flexible	 in	
streaming	whichever	data	is	in	a	GTP	file.	Currently	the	tools	offer	two	strategies,	which	Figure	13	illustrates:

•	 One	GTP	page	file	per	mip	map	level.	You	get	a	small	number	of	relatively	large	files,	a	strategy	best	
suited	for	optimal	streaming	performance.

•	 One	GTP	per	Stacked	Texture	(in	other	words,	one	per	GTex).	You	get	a	larger	number	of	relatively	
small	files,	 a	 strategy	best	 suited	 for	patching.	 Such	a	 strategy	 tries	 to	minimize	 the	number	of	
changes	in	multiple	iterations	of	GTP	files	over	the	life	time	of	a	product.	Indeed,	when	one	tile	is	
changed,	only	a	small	number	of	small-sized	GTPs	need	to	be	updated.

During	development,	teams	can	stream	from	GTex	files	directly.	Any	changes	to	a	Stacked	Texture	result	in	a	
single	GTex	file	being	updated,	so	only	this	file	needs	to	be	pushed	to	version	control	or	any	sharing	platform.	
Finally,	Figure	14	summarizes	which	Tile	Set	files	get	introduced	and	changed	when	Stacked	Textures	in	an	
existing	build	are	added	or	updated.

19
© 2018 Graphine NV

Figure 14:	Effect	of	two	paging	strategies	after	updating	and	adding	Stacked	Textures	in	an	existing	build.	
On	the	top,	GTP	per	Level,	on	the	bottom,	GTP	per	GTex.

Version Control and Team Work Flow

Granite	SDK	5	works	well	with	version	control	systems	such	as	Git	and	Perforce.	Figure	15	summarizes	the	
files	typically	checked	in	into	such	a	system.	In	the	usual	scenario,	these	are	the	project	files,	source	images,	
and	GTex	files.

We	see	teams	using	different	types	of	collaboration	work	flows	with	Granite	textures.	Some	teams	build	both	
GTex	files	and	Tile	Set	files	on	their	local	system,	and	share	these,	either	through	version	control,	or	over	their	
favorite	file	sharing	platform.	Sometimes	there	is	only	one	artist	responsible	for	Granite-enabled	materials,	
sometimes	all	the	artists	build	their	Tile	Sets.	For	example,	an	artist	changes	a	material,	which	changes	the	
corresponding	Stacked	Texture.	He	builds	the	GTex	and	Tile	Set	files	on	his	local	system,	and	checks	in	these	
files	in	Perforce.	His	team	members	check	out	the	updates	files	and	use	them	in	their	project.

This	works	 for	 relatively	 small	 Tile	 Sets	 that	build	 relatively	 fast.	As	 soon	as	 the	Tile	 Set	 gets	 larger,	 it	 is	
beneficial	to	build	only	the	GTex	files	locally,	and	stream	from	these	GTex	files	during	production.	For	larger	
Tile	Sets,	teams	sometimes	set	up	a	build	machine	to	build	the	Tile	Set	(See	Funcom’s	blogpost	on	this		here	
).	Daily	builds	can	then	stream	from	GTex	files.	For	example,	an	artist	changes	a	material,	he	then	builds	the	
corresponding	GTex	on	his	local	system,	and	checks	it	in	in	Perforce.	He	streams	from	these	GTex	files.	His	
team	members	check	out	the	updated	GTex	and	also	stream	from	GTex	files	in	their	project.	Every	time	a	
testing	build	of	the	game	is	made,	Tile	Sets	are	built	on	a	dedicated	build	machine	and	included	in	the	testing	
build.

If	during	production	you	want	to	share	the	optimized	Tile	Set	files	instead	of	the	GTex	files,	you	need	to	put	
careful	thought	into	which	GTP	generation	strategy	you	choose.	The	GTP-per-Level	strategy	will	result	in	a	
number	of	potential	large	files	that	need	updating	even	if	only	one	tile	has	changed,	as	Figure	14	showed.	

20
© 2018 Graphine NV

The	GTP-per-GTex	strategy	will	generate	a	large	number	of	relatively	small	GTP	files.	In	this	case,	touching	
one	tile	will	result	in	a	small	number	of	small	files	being	changed.

Figure 15:	Overview	of	which	files	to	put	under	version	control

Note	that	we	recommend	keeping	the	original	source	files.	Managing	GTex	files	conceptually	compares	to	
managing	DDS	files.	A	GTex	file	represents	a	coded	texture	and	if	you	want	to	change	some	properties	such	
as	the	coding	format,	you	need	to	rebuild	it	and	therefore	have	access	to	the	original	source	images.

Deep Integration

For	popular	3rd	party	engines,	Graphine	offers	a	pre-integrated	version	of	Granite	SDK.	These	integrations	
are	production	ready	from	the	start.	Using	Granite	is	almost	as	easy	as	just	switching	on	one	flag.	The	Granite	
tool	 will	 then	 automatically	 take	 care	 of	 importing	 textures	 in	 our	 tiled	 streamable	 format,	 and	 adjust	
materials	for	rendering	from	it.	Most	notably	we	have	integrations	available	for	Unreal	Engine,	and	Unity.	
These	integrations	show	what	a	deep	integration	of	Granite	SDK	can	look	like	in	your	engine.

Our	Unreal	 Engine	 4	 integration	 introduces	 a	 new	Unreal	 Blueprint	 node	 to	 the	material	 editor	 called	 a		
GraniteStreamNode		Node	(see	Figure	16).	To	stream	a	UE4	texture	through	Granite,	the	only	step	to	take	is	to	
replace	the	original	texture	sample	node	with	the		GraniteStreamNode		node.	The	integration	automatically	
picks	up	all	UE4	textures	behind	each		GraniteStreamNode	,	builds	the	corresponding	Tile	Set	and	updates	
the	material	 to	 use	 the	Granite	 sampling	methods.	 The	 integration	 enables	 streaming	 in	 the	 editor	 and	
automatically	adds	all	Tile	Set	files	to	the	final	game	build.	More	information	on	the	UE4	integration	can	be	
found	here:	http://graphinesoftware.com/granite-unreal-video-tutorials.

21
© 2018 Graphine NV

Our	Unity	integration	works	a	bit	different.	Here,	to	stream	a	material	using	Granite,	the	artist	converts	the	
material	 in	 the	editor	by	changing	the	shader	to	a	Granite	equivalent	shader.	Default	Unity	shaders	have	
Granite-equivalent	 shaders	out	of	 the	box.	Custom	shaders	need	 to	be	adjusted	 to	use	 the	HLSL	Granite	
sampling	 instructions.	Next,	you	create	a	Tile	Set	object,	 specify	 its	 layout	and	assign	 it	 to	 that	material.	
Behind	the	scenes,	our	integration	scans	for	all	materials	that	use	the	Granite	shader,	steers	the	tools	to	add	
the	material’s	textures	to	the	assigned	Tile	Set,	and	updates	the	material	to	use	Granite	streaming.	Building	
the	Tile	Sets	through	a	Unity	menu	option	enables	streaming	in	the	editor,	and	packaging	and	building	the	
final	 game	 automatically	 sets	 up	 the	 final	 build	 to	 stream	with	 Granite.	More	 information	 on	 the	Unity	
integration	can	be	found	here:	http://graphinesoftware.com/granite-unity-video-tutorials.

Figure 16:	The	deep	integration	of	Granite	SDK	in	UE4	puts	itself	in	the	material	editor	where	connecting	a	
‘Granite	Stream	Node’	is	all	it	takes	to	set	up	materials	to	use	Granite.

System Requirements and Overhead

The	minimal	requirements	for	the	target	system	(the	End-user)	on	PC	are	very	specific	for	the	application	
scenario.	CPU	and	memory	requirements	for	example	depend	on	the	type	of	application,	the	platform,	etc.	
On	the	PC	platform,	a	minimal	system	can	consist	of:

•	 Core	2	Duo	E6600	2.4GHz	or	Athlon	64	X2	Dual	Core	4800+	CPU
•	 3D	Graphics	card	according	to	tile	backend

22
© 2018 Graphine NV

•	 DirectX	11	feature	level	10_0	compatible	graphics	card,	(e.g.	GeForce	8800	GT,	Radeon	HD	
4850	or	equivalent	hardware	from	the	same	generation)

•	 DirectX	9
•	 OpenGL	ES	3	
•	 OpenGL

•	 128	MB	free	RAM	(even	lower	is	supported)
•	 Windows	Vista	and	up	(32	&	64	bit)

The	minimal	requirements	for	the	development	system	working	with	Granite	SDK	are:

•	 Windows	7,	8,	8.1,	or	10	64	bit
•	 4	gigabytes	of	RAM
•	 DirectX	11	compatible	graphics	card

Using	Granite	SDK	streaming	system	does	introduce	some	strain	on	the	target	system,	but	this	typically	has	
little	effect	to	the	overall	performance	of	the	system.	In	fact,	Granite	is	frequently	used	in	VR	scenarios	where	
the	budget	for	additional	computations	is	extremely	low	(e.g.,	90Hz	has	only	11	milliseconds	per	frame).	On	
the	GPU,	the	cost	Granite	introduces	comes	from	running	extra	shader	instructions	when	sampling	Granite	
textures,	and	bookkeeping	texture	tile	ids	in	an	additional	render	target.	On	the	CPU,	the	cost	mainly	comes	
from	loading	and	transcoding	tiles.	Additionally,	reading	tiles	from	hard	disk	puts	some	strain	on	the	IO	bus.	
Although	the	actual	performance	 impact	of	streaming	with	Granite	SDK	depends	on	the	sampling	rate	of	
Virtual	Textures,	the	compression	settings,	the	scene,	etc.,	we	see	teams	that	use	Granite	SDK	such	as	Funcom	
generalizing	its	performance	cost	to	about	one	millisecond	of	CPU	time	per	CPU	core	and	one	millisecond	of	
GPU	time	per	second2.

Other Topics

Avoiding Texture Popping

When	a	texture	is	not	available	in	time,	texture	streaming	systems	such	as	Granite	SDK	typically	fall	back	to	
a	low-resolution	version	of	that	texture.	This	way,	there	is	always	something	to	render	on	screen.	But	when	
that	requested	higher	resolution	texture	suddenly	becomes	available,	it	creates	a	distinct	visual	event	when	
the	higher	resolution	texture	is	rendered.	It	‘pops’	into	view.	This	behavior	is	typically	experienced	by	the	
viewer	as	disturbing	and	should	be	avoided.

2	 Graphine	 presented	 together	 with	 Funcom	 their	 results	 and	 experiences	 on	 integrating	 Granite	 into	
Funcom’s	Conan	Exiles	at	the	Nordic	Game	Conference	2017.	The	presentation	can	be	found	here:	https://
conf.nordicgame.com/sessions/textures-ultra-masses-conan-exiles	.

23
© 2018 Graphine NV

Teams	using	Granite	SDK	report	they	seldom	see	popping	artefacts	with	Granite.	This	is	because	first,	Granite	
has	a	much	optimized	tile	 loading	pipeline.	 Lots	of	times,	 it	 takes	only	a	very	 small	number	of	 rendered	
frames	 (e.g.,	 16	milliseconds	 for	 60Hz)	 between	 a	tile’s	 request	 and	 the	moment	 it	 is	 available.	 Second,	
Granite	explicitly	avoids	popping	by	prefetching	tile	data	in	advance,	hence,	making	sure	that	once	needed,	
the	data	 is	 already	present	 in	 the	caches.	Third,	Granite	allows	 the	user	 to	explicitly	 control	tile	 loading.	
Tile	 cache	misses	 can	be	anticipated	by	 loading	 specific	tiles	 in	advance.	Tiles	 can	be	pinned	 in	memory	
such	that	they	are	never	evicted.	And	a	special	resolve	camera	can	be	used	to	‘preview’	a	scene	(e.g.,	put	a	
camera	at	the	other	side	of	a	teleportation	portal).	And	last,	as	previously	discussed,	a	LOD	bias	mechanism	
gradually	throttles	down	the	streaming	once	many	cache	misses	start	to	occur.	The	mechanism	steers	Granite	
in	streaming	lower	resolution	tiles	for	the	entire	scene	over	a	short	period	of	time.	Once	lesser	cache	misses	
occur,	higher	resolution	tiles	start	to	get	loaded	in	gradually.

Instant Play and Optimizing Loading Times

Texture	streaming	does	not	load	textures	in	advance	in	memory	but	streams	textures	gradually	into	texture	
caches	after	which	they	can	be	used	immediately.	As	a	result,	there	isn’t	really	a	pin-point-able	texture	loading	
period	at	the	start	of	an	application.	Instead,	your	application	starts	immediately.	In	fact,	Granite	does	not	
require	all	Tile	Set	Page	files	(GTP	files)	to	be	present	on	disk	when	streaming.	For	example,	you	can	start	
the	application	when	the	highest-resolution	GTP	files	are	not	yet	downloaded	on	disk.	Granite	will	then	omit	
loading	any	tile	located	in	the	missing	GTP	files.	Once	the	GTP	file	is	present	on	disk,	you	can	instruct	Granite	
again	to	load	the	higher-resolution	tiles	from	the	new	GTP	file.

Optimizing Tile Set Files by Tile Pruning

Granite	natively	 supports	 sparse	 Tile	 Sets,	 i.e.,	 Tile	 Sets	 that	 had	 some	tiles	 removed	and	not	 stored	on	
disk.	Now	if	we	were	to	cull	texture	regions	never	used	in	the	game	or	cinematic,	these	regions	don’t	take	
up	storage	space	and	the	Tile	Set	becomes	smaller	on	disk3.	Example	use	cases	 include	culling	of	texture	
detail	not	used	for	cinematics,	removing	too	highly-authored	texture	detail,	e.g.,	fine-grained	details	on	a	
mountain	texture	only	viewed	at	a	large	virtual	distance,	removing	hidden	texture	detail.	For	example,	we	
ran	our	experimental	Tile	Set	optimizer	on	Epic’s	A	Boy	and	His	Kite	demo.	This	demo	has	a	two	minute	long	
cinematic	showing	a	100-square-mile	landscape	with	many	photogrammetry-captured	textured	objects.	Our	
optimizer	removed	all	texture	detail	that	isn’t	shown	in	the	cinematic.	From	a	4.5GB	Tile	Set	we	went	to	a	
230MB	Tile	Set.	We	replaced	the	original	tile	sets	with	the	culled	version,	replayed	the	cinematic,	and	the	
output	was	visually	identical.

3	The	idea	of	tile	pruning	or	visibility-based	optimizations	was	originally	presented	by	J.M.P.	Van	Waveren	
for	Id	Software’s	game	Rage.	More	information	on	this	topic	can	be	found	here:	http://www.mrelusive.com/
publications/papers/Software-Virtual-Textures.pdf.

24
© 2018 Graphine NV

Streaming Tile Sets over a Network and Visualizing Tile Sets in WebGL

One	experimental	feature	based	on	Granite	5	our	team	is	working	on	is	streaming	tiles	directly	over	a	network	
such	as	the	internet.	Instead	of	loading	tiles	from	disk	or	generating	them	on	the	fly,	they	are	requested	from	
a	network	server	such	as	a	web	server	and	streamed	over	the	network.	This	allows	you	to	start	an	application	
almost	instantly	without	having	to	download	any	texture	data	beforehand.	Textures	are	streamed	in	over	the	
network	the	moment	they	are	required.	We	also	have	an	experimental	WebGL	Runtime	component	capable	
of	streaming	and	visualizing	tiles	directly	in	the	browser	using	the	WebGL	API	(Figure	16).

Figure 16:	Screenshot	of	experimental	WebGL	streaming	in	Google	Chrome	visualizing	
a	landscape	textured	with	a	122,880	x	122,880	pixels	large	texture.

In Summary

Granite	SDK	streams	your	textures,	no	matter	which	type	of	texture,	how	many	you	have	or	how	large	they	are,	
or	which	type	of	game	or	application	you	have.	The	Granite	runtime	runs	on	millions	of	devices	worldwide	on	
many	platforms.	Its	production	pipeline	is	industry	proven	by	some	of	the	leading	game	production	studios	
such	 as	Wargaming,	 Sumo	Digital,	 and	 Funcom.	Granite	 is	 continuously	 being	 developed	by	 a	 dedicated	
team,	which	is	available	for	working	closely	with	you	to	reach	your	goals.	Custom	features	can	be	added	on	
requests.	If	you	are	interested	in	Granite	SDK,	or	would	like	to	receive	more	information,	please	contact	us		
info@graphinesoftware.com.

